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Numerical simulations of the recently derived fully nonlinear equations of motion for long-crested water
waves �V. P. Ruban, Phys. Rev. E 71, 055303�R� �2005�� with quasirandom initial conditions are reported,
which show the spontaneous formation of a single extreme wave on deep water. This rogue wave behaves in
an oscillating manner and exists for a relatively long time �many wave periods� without significant change of
its maximal amplitude.
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I. INTRODUCTION

Rogue waves �rare extreme events on a relatively calm
sea surface, alternatively called freak, killer, or giant waves�,
for a long time a part of marine folklore, since the 1970s
have been methodically documented by oceanographers �see
review �1� for examples and some relevant statistics, and also
the special issue of the European Journal of Mechanics
B/Fluids �2� for articles describing recent progress in this
field�. From the viewpoint of nonlinear science, a rogue
wave is an extremely nonlinear object—typically, the ampli-
tude of a freak wave in maximum is close to the amplitude of
the corresponding limiting Stokes wave, that is h /�
�0.10–0.14, where h is the peak-to-trough height, and � is
the length of the wave �3�. Therefore, for adequate quantita-
tive investigation, this phenomenon requires fully nonlinear
equations and accurate numerical methods. For two-
dimensional �2D� potential flows with a free boundary, a
very efficient and precise numerical scheme has been devel-
oped recently by Zakharov and co-workers �4�. The scheme
is based on exact �1+1�-dimensional equations of motion
written for the surface shape and for the boundary value of
the velocity potential in terms of the so-called conformal
variables �the corresponding exact 2D theory is described in
Refs. �5–11��. The method extensively uses algorithms of the
discrete fast Fourier transform �FFT�. With applying this
method, impressive computations have been performed,
where a numerical giant wave developed due to the
Benjamin-Feir �modulational� instability �12,13� from a
slightly perturbed Stokes wave. The spatial resolution in
these numerical experiments was up to 2�106 points �3�. As
to three-dimensional �3D� flows, unfortunately, a similar ex-
act and compact �2+1�-dimensional form of equations is ab-
sent. Therefore “exact” 3D simulations are currently based
on the rather expensive boundary element method �BEM�
and its modifications �see Refs. �14–17�, and references
therein�. Since the underlying algorithms of BEM are quite
complicated, the best practically achieved spatial resolutions
on the free surface for essentially 3D waves are typically few
tens multiplied by few tens, as in the recent works �15–17�.
Definitely, this is not sufficient to simulate large wave sys-
tems with dozens and hundreds of waves, as it is necessary

for practical applications. We exclude here the approximate
equations describing wave envelopes �18–21�, because they
are not appropriate in real situations when many random
waves with very different wave vectors and amplitudes are
excited. Other approximate equations, for instance the
weakly nonlinear Zakharov equations �22–25�, are only good
if the wave steepness is small, but this is clearly not the case
for the extreme waves. However, though rogue waves are
strongly nonlinear, and the wave steepness cannot serve any-
more as a small parameter of the theory, nevertheless, an-
other small parameter may exist in the system. Namely, prac-
tically important is the situation when relatively long �much
longer than a typical wave length� wave crests are oriented
along a definite horizontal direction. For such weakly 3D
flows, the advantages of the conformal variables are almost
recovered, as it has been explained in Refs. �26,27�. In the
cited papers, the noncanonical Hamiltonian description in
terms of the conformal variables has been generalized from
2D to 3D potential inviscid flows with a free surface, and the
asymptotic expansion of the Hamiltonian functional on the
small parameter �= �lx / lq�2 has been suggested, where lx is a
typical wave length, and lq is a large transversal scale along
the wave crests. In particular, the first-order 3D corrections
have been calculated explicitly. What is important, all linear
operators coming into the equations are diagonal in the
Fourier representation. Therefore a relatively high spatial
resolution �16 384�256 in Ref. �27�� for the corresponding
numerical algorithm has been possible due to the large num-
ber of local operations that result from the Fourier diagonal-
ization. In Ref. �27� some numerical results have been pre-
sented, for nonrandom initial conditions and typical
dimensionless wave numbers about 20.

In the present work, new numerical experiments are re-
ported, which are more close to reality. Main wave numbers
now are about 50. In the first experiment �Sec. III�, the com-
putations start with a quasirandom initial state �shown in Fig.
1�. Concerning efficiency of the numerical implementation, it
should be noted that with the FFTW library �28�, it takes less
than 2 min to perform one step of the Runge-Kutta-4 nu-
merical integration on an Intel Pentium 4 CPU 3.60 GHz
with 2048 M memory, for the maximal possible spatial reso-
lution 16 384�512. Here a giant wave formation has been
observed as well, but contrary to the previous computations
�3,27�, this freak wave is not so high to break, but it exists
for many wave periods without tendency towards increasing*Electronic address: ruban@itp.ac.ru
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or decreasing its maximal amplitude �see Figs. 2 and 3�. The
maximal amplitude in this case is distinctly less than that of
the limiting Stokes wave �h /��0.10 vs 0.14�. During the
lifetime, the rogue wave behaves in an oscillating manner,
with the highest crest being alternately ahead or behind of
the deepest trough. Observation of such kind of behavior is
important for better understanding of the rogue wave phe-
nomenon. It is quite possible that such nonbreaking, subex-
treme giant waves of large-but-moderate steepness h /�
�0.09–0.10 occur in the ocean even more frequently than
the highest, breaking freak waves of the same length. Indeed,
the latter require more restrictive preliminary conditions as
longer and/or higher groups of waves in a random weakly
nonlinear wave field, and therefore are less probable. In
other words, the probability distribution functions P�y� for
the surface elevation are typically decaying at large y.
It should also be emphasized that the oscillating behavior is
not something unusual, but it is a common feature in dynam-
ics of relatively short wave groups, as our second set of
numerical experiments demonstrates �Sec. IV�.

In the third numerical experiment �Sec. V�, initially it
was a plane wave, close to a Stokes wave, but with a very
low-level random-phase perturbation added to the 2D
Fourier spectrum. In this case the evolution had several dis-
tinctly different stages. The first stage was the development
of the Benjamin-Feir instability. The second stage was

forming by wave groups of some random zigzag pattern. The
third stage was characterized by chaotization of the wave
field and random appearing of freak waves.

II. BREATHING FREAK WAVE IN A RANDOM WAVE
FIELD

Let us first give some necessary definitions. We use Car-
tesian coordinates x ,q ,y in the physical space, with the y
axis upward directed. The symbol z denotes the complex
combination: z�x+ iy. For every value of q, at any time
moment t, there exists an analytical function z�u+ iv ,q , t�
which determines a conformal mapping of the lower half
plane of an auxiliary complex variable w=u+ iv into the ac-
tual fluid domain �that is, a point �x ,y ,q� is inside the fluid if
v�0, and it is on the free surface if v=0�. Therefore the
shape of the free surface is given in a parametric form:

Z = X + iY = z�u,q,t� = u + �i − Ĥ�Y�u,q,t� . �1�

The Hilbert operator Ĥ is diagonal in the Fourier
representation: it multiplies the Fourier harmonics

FIG. 1. �Color online� Map of the free surface at t=0.

FIG. 2. Maximum wave height vs dimensionless time. t=100
approximately corresponds to 15 min.

FIG. 3. �Color online� Top: wave profiles at t=50. Bottom: map
of subregion where the rogue wave exists.
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Ykm�t� � � Y�u,q,t�e−iku−imqdudq

by �i sgn k�, so that

ĤY�u,q,t� =� �i sgn k�Ykm�t�eiku+imqdkdm/�2��2. �2�

Thus the first unknown function is Y�u ,q , t�. The second
unknown function is the boundary value ��u ,q , t� of the ve-
locity potential,

��u,q,t� =� �km�t�eiku+imqdkdm/�2��2.

Correspondingly, there are two main equations of motion. As
it has been shown in Refs. �26,27�, the equations can be
written in a general form involving variational derivatives of

the kinetic-energy functional K�� ,Z , Z̄	. Unfortunately, in
three dimensions there is no exact compact expression for

K�� ,Z , Z̄	. However, for long-crested waves propagating
mainly in the x direction �parameter �
�lx / lq�2�1�, one can
use approximate functionals valid up to a certain order on �.
The simulations presented here are based on an approximate
kinetic-energy functional resulting in the first-order accuracy
on � and correct linear dispersion relation �see the recent
author’s e-print �29� for explicit expressions�.

Following the procedure described in Ref. �27�, a numeri-
cal experiment has been performed, which is described be-
low. A square 5�5 km in the �u ,q� plane with periodic
boundary conditions was reduced to the standard square
2��2� and discretized by N�L points. Thus all the wave
numbers k and m are integers. Dimensionless time units im-
ply g=1. As an initial state, a superposition of quasiran-
domly placed wave packets was taken, with 25 packets hav-
ing wave vector �60, 2�, 25 packets having wave vector �50,
0�, 16 packets with �40,−2�, and 12 packets with �30, 1�.
Amplitudes of the packets with k=50 were dominating. Thus
a typical wavelength was 100 m, and a typical dimensionless
wave period was T=2� /�50�1. The crest of the highest
wave was initially less than 3 m above zero level. A map of
the free surface at t=0 is shown in Fig. 1. It is clear from this
figure that initially �
0.01.

The evolution of the system was computed with N
=16 384 and L=256 to t=40.0, until the beginning of a
rogue wave formation. After t=40.0, the rogue wave was
present in the system �see Fig. 4�, and during many wave
periods its height in maximum was approximately 7 m, as
Fig. 2 shows. It resulted in widening of the wave spectrum
�see Fig. 5, where �
m2 /k2
0.05�, and therefore L=512
was employed from t=40.0 to t=60.0. Within this period, the
total energy was decreased by 0.5% due to numerical errors.
Finally, from t=60.0 and to the end of the experiment, L
=1024 was used to avoid progressive loss of accuracy �the
last stage has required computer with 3072 M memory, and
it took 5 min per one step of integration�.

The presence of the rogue wave strongly affects the prob-
ability distribution function P�y� of the free surface elevation
y�x ,q�. Figure 6 shows that the distribution has a Gaussian

core and “heavy” tails, which are not symmetric—large
positive y are more probable than large negative y.

The most interesting observation of the present numerical
experiment is that a freak wave can exist for a relatively long
time without a significant tendency towards breaking or dis-
appearing. While “living,” the big wave does something
similar to breathing, as shown in Fig. 7. The rogue wave

FIG. 4. �Color online� Top: map of the free surface at t=50
�7 min 30 sec�. The rogue wave has coordinates x�3.7 km, q
�3.7 km. Middle: map at t=60 �9 min 1 sec�. The rogue wave is at
x�4.3 km, q�3.4 km. Bottom: map at t=91 �13 min 40 sec�. The
rogue wave is at x�1.2 km, q�2.8 km, and a specific V-shaped
wave pattern behind it is visible.
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propagates along the free surface �the velocity of propagation
is close to the typical group velocity�, and position of the
highest crest is alternately ahead or behind of the deepest
trough. The time period of this “breathing” approximately
equals to two typical wave periods, which property seems
natural due to the fact that the group velocity of the gravity

water waves is one-half of the phase velocity. Very roughly
this behavior can be described as a short wave envelope
�containing approximately one wave length inside� filled
with a strongly nonlinear periodic Stokes wave having a
wave vector k0= �k0 ,m0�. Let us note that Fourier spectrum

FIG. 6. Distribution of the surface elevation y�x ,q� at t=50 �no
averaging over the time is done�.

FIG. 7. Rogue wave profiles at t=45, t=50, t=55, and t=60.

FIG. 5. �Color online� Spectrum of the right-propagating
waves at t=50. Here is shown log10�Ykm+ iPkm�, where
Pkm= �k2+m2�1/4�km.
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of such idealized coherent structure consists of terms which
depend on time through the factors

exp�− it�	„
�k0� − Vgr�k0� · k0… + Vgr�k0� · k�	 ,

where 
�k�= �g�k��1/2 is the linear dispersion relation,
Vgr�k���
�k� /�k is the group velocity, and 	 is an integer
number, 	=1,2 ,3 , . . .. Therefore this coherent structure can
efficiently excite those waves which satisfy the resonance
condition �the most important is 	=1�


�k0� + Vgr�k0� · �k − k0� − 
�k� = 0. �3�

Indeed, after 11 oscillations with the almost constant ampli-
tude 7 m, the numerical rogue wave was observed to gradu-
ally irradiate accumulated energy into a specific V-shaped
wave pattern visible in Fig. 4 at t=91. This wave pattern
nearly corresponds to the resonance condition �3�. In Fig. 8
one can see the Fourier spectrum at t=91, with two main
resonance stripes and the other stripes on higher harmonics.

However, a more accurate explanation and an analytical
study of the observed coherent nonlinear structure is a
subject of future work.

III. FREAK WAVE IN A SHORT 2D WAVE GROUP

Since accuracy of the above described numerical experi-
ment was rather limited due to large typical wave numbers, it
was desirable to reproduce the basic feature �oscillations at
nearly constant amplitude for several wave periods� with a
better effective resolution. For this purpose, the formation of
a freak wave in a separated wave group was numerically
investigated, with the basic wave number k0=25, thus allow-
ing a double spatial resolution per wavelength as compared
to the first experiment �see Figs. 9 and 10 where only one of
several experiments of this kind is presented�. It was found
that, depending on the initial amplitude and the sizes of
the group �longitudinal and transversal�, the resulting freak
wave was either breaking �in higher, longer, and wider
groups�, or its amplitude achieved a maximal value and then
gradually decayed, without breaking, due to defocusing in

the transversal direction. In both regimes, the same oscillat-
ing behavior took place as in the previous experiment
�see Fig. 10 as a typical example�. We describe the rogue
wave as breathing, since the deepest trough alternates
from front to back over time. The experiments with separated
wave groups rule out the possibility that this is merely due to
another wave train traveling at a different speed and
constructively interfering with the rogue wave profile. In-

FIG. 8. �Color online� Spectrum of the right-propagating
waves at t=91. The visible stripes nearly correspond to the
resonance Eq. �3� and higher harmonics. A rough value of � at this
time is approximately 0.2.

FIG. 9. �Color online� Experiment with a separate wave group.
Top: map of the free surface at t=0. Bottom: map at t=111.0
�11 min 47 s�.

FIG. 10. Height of the highest crest and depth of the deepest
trough in a separate wave group, vs time �t=100 corresponds here
to 10 min 37 sec�.
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stead, the oscillations are an intrinsic feature of rogue waves.
There is also another important result of these numerical

experiments. They suggest that subextreme, nonbreaking, os-
cillating rogue waves must occur in ocean more frequently
than rogue waves of maximal possible height, because
shorter and lower wave groups are known to arise in a
random wave field more probably.

IV. EVOLUTION OF A RANDOMLY PERTURBED
PLANAR WAVE

The purpose of the third numerical experiment was to
simulate a randomly perturbed planar wave, in order to ob-
serve development of the Benjamin-Feir instability, and then
enter a very late, highly nonlinear stage of the evolution. The
results of this study are presented in Figs. 11–14. Initially it
was an almost perfectly planar, right-propagating wave with
the main wave number k0=50 and two higher harmonics on
2k0 and 3k0. The initial steepness was h /��0.026. A low-
level random-phase 2D perturbation was put into the
spectrum at t=0, with amplitudes presented in Fig. 11�a�.

The evolution of this system was observed to pass several
main stages, which fact is reflected in Figs. 12 and 13. In the
first stage, from t=0 and to approximately t=400, it was a
conventional 2D Benjamin-Feir instability with the typical
structure of the spectrum �see Fig. 11�b��. This stage ended
with formation of some zigzag pattern by wave envelope, as

shown in Fig. 13. After that, in the second stage, a nonlinear
interaction between elements of the pattern resulted in in-
creasing of the maximal wave height �Fig. 12�. The spectrum
became more and more broad �see Figs. 11�c� and 11�d��,
and the distribution P�y� approached a Gaussian profile in its
core �see Fig. 14�. In this way, the system gradually entered
the third stage, that is a fully developed, highly nonlinear
wave turbulence, with randomly appearing �sub�extreme
waves. However, since the dynamics violated the original

FIG. 11. �Color online� Experiment with a randomly perturbed planar wave. Spectra at different time moments.

FIG. 12. Height of the highest crest and depth of the deepest
trough in experiment with a randomly perturbed planar wave. t
=100 corresponds here to 15 min.

V. P. RUBAN PHYSICAL REVIEW E 74, 036305 �2006�

036305-6



weak three-dimensionality assumption, the computations
were terminated when �
0.2. An accurate simulation of fur-
ther evolution is not possible within the present approximate
model.

Two analogous numerical experiments have been also
performed with different initial amplitudes �not shown�.
Qualitatively the same behavior took place for a larger am-
plitude, h /��0.029. However, with a smaller initial steep-
ness, h /��0.019, the system was in a weakly nonlinear
regime for all the time, and freak waves were not observed.

V. SUMMARY

The recently developed fully nonlinear theory for long-
crested water waves together with the corresponding FFT-
based numerical method �27� are shown in this work to be an
adequate tool for modeling rogue waves in close to real situ-
ations, that is with many random waves propagating mainly

FIG. 13. �Color online� Maps of the free surface at different
time moments in experiment with a randomly perturbed planar
wave.

FIG. 14. Experiment with a randomly perturbed planar wave.
The distributions of the surface elevation at different time moments.
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along a definite horizontal direction. Now it has been pos-
sible to deal with quite high spatial resolutions, since in the
present algorithm all the nonlocal operations are reduced to
the FFT computing, and the latter is fast with modern nu-
merical libraries. Different dynamical regimes of the rogue
wave formation and evolution can be investigated. In

particular, the present paper reports observation of a long-
lived rogue wave. Such oscillating subextreme big waves are
definitely important from a practical viewpoint. It has been
also demonstrated in the present paper that the evolution of a
randomly perturbed planar wave goes through the formation
of a specific zigzag pattern.
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